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PSNR: 32.99dB PSNR: 33.54dB PSNR: 23.62dB

Fig. 1. Despite its high efficiency in 3D reconstruction, 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] suffers from needle-like artifacts (red boxes) due to
undersampling or view inconsistency. Recent works [Liang et al. 2024; Yu et al. 2024; Zhang et al. 2024a] try to eliminate these artifacts. Unfortunately, they
still produce needles at high-frequency regions when zooming in, and will also cause over-blurriness (blue boxes) since they lack shape awareness of 3D
Gaussians. Through spectral analysis, we introduce Spectral-GS, which enforces shape constraints on 3D Gaussians, effectively resolving the above issues and
enabling high-quality rendering without extra time cost.

Recently, 3D Gaussian Splatting (3DGS) has achieved impressive results in

novel view synthesis, demonstrating high fidelity and efficiency. However, it

easily exhibits needle-like artifacts, especially when increasing the sampling

rate. Mip-Splatting tries to remove these artifacts with a 3D smoothing filter

for frequency constraints and a 2D Mip filter for approximated supersam-

pling. Unfortunately, it tends to produce over-blurred results, and sometimes

needle-like Gaussians still persist. Our spectral analysis of the covariance ma-

trix during optimization and densification reveals that current 3DGS lacks

shape awareness, relying instead on spectral radius and view positional

gradients to determine splitting. As a result, needle-like Gaussians with
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small positional gradients and low spectral entropy fail to split and overfit

high-frequency details. Furthermore, both the filters used in 3DGS and Mip-

Splatting reduce the spectral entropy and increase the condition number

during zooming in to synthesize novel view, causing view inconsistencies

and more pronounced artifacts. Our Spectral-GS, based on spectral analysis,

introduces 3D shape-aware splitting and 2D view-consistent filtering strate-

gies, effectively addressing these issues, enhancing 3DGS’s capability to

represent high-frequency details without noticeable artifacts, and achieving

high-quality realistic rendering.

CCS Concepts: • Computing methodologies→ Rasterization; Image-
based rendering; Antialiasing; Machine learning.

Additional KeyWords and Phrases: Novel view synthesis, Gaussian splatting,

Anti-aliasing
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1 Introduction
Reconstructing 3D scenes from 2D images and synthesizing novel

views has been a critical task in computer graphics and vision. As

the demand for real-time and photo-realistic rendering continues to

rise, 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] has emerged

as an efficient representation that can achieve fast reconstruction

and real-time rendering [Bao et al. 2025; Chen and Wang 2024; Fei
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et al. 2024; Wu et al. 2024]. However, 3DGS [Kerbl et al. 2023] tends

to optimize toward degraded needle-like Gaussians, resulting in

unacceptable needle-like artifacts (elongated artifacts) [Hyung et al.

2024; Kerbl et al. 2023; Yu et al. 2024; Zhang et al. 2024a]. Some

existing methods, such as Yu et al. [2024] and Liang et al. [2024],

attempt to address these issues by employing filtering or analytic

integration to mitigate aliasing. Unfortunately, when representing

high-frequency textures, these methods often lead to over-blurriness

or still produce artifacts.

Needle-like Gaussians correspond to 3D Gaussians with low spec-

tral entropy and high condition number. Existing 3DGS and its

variants [Kerbl et al. 2023; Yu et al. 2024] do not impose any re-

striction on the Gaussian’s shape. The splitting strategies in 3DGS

lean towards generating degenerated elongated Gaussians, due to

the lack of shape-awareness, relying instead on spectral radius and

view positional gradients to guide the splitting. However, needle-

like Gaussians with small positional gradients are hard to split.

Even after splitting, the conventional strategy leaves the Gaussian’s

condition number ill-conditioned, offering little improvement in

mitigating needle-like artifacts. Although Hyung et al. [2024] also

tries to constrain the anisotropy of Gaussians, simply introducing a

covariance loss term cannot activate the densification mechanism,

leading to the loss of high-frequency details. Worse still, both the

EWA filter, employed in 3DGS [Kerbl et al. 2023] and in Hyung et al.

[2024], and the 2D Mip filter in Mip-Splatting [Yu et al. 2024] reduce

spectral entropy and increase the condition number when zooming

in to synthesize novel views. Due to the view-inconsistency in filter-

ing, needle-like artifacts become more pronounced when zooming

in or when the camera moves closer to the object.

Based on the above observations, we introduce spectral analysis to
3D Gaussians. Specifically, we propose 3D shape-aware splitting and

2D view-consistent filtering, respectively, to address loss sensitivity

and shape unawareness in densification, as well as view inconsis-

tency in filtering. The splitting condition of our 3D shape-aware

splitting is based on the spectral entropy of 3D Gaussians and our

method ensures that the condition number after splitting reduces.

The proposed 2D view-consistent filtering, combines a convolution

that approximates supersampling with a view-adaptive Gaussian

blur that approximates interpolation to maintain the spectral en-

tropy consistency. Our method Spectral-GS effectively enhances

3DGS’s capability to represent high-frequency details, mitigates

needle-like artifacts, and achieves high-quality photorealistic ren-

dering, as illustrated in Fig. 1. Furthermore, our method is easily

implemented, requiring only few changes to the original framework.

Regarding computational costs, our method achieves roughly the

same performance as the original 3DGS either in training or in

inference. In summary, we make the following contributions:

• We employ spectral analysis to examine 3DGS, revealing

issues such as loss sensitivity and shape unawareness in den-

sification, as well as view inconsistency in filtering.

• We propose 3D shape-aware splitting to regularize needle-

like Gaussians, enhancing the high-frequency detail repre-

sentation for 3DGS and mitigating needle-like artifacts.

• We propose 2D view-consistent filtering to resolve needle-

like artifacts caused by view-inconsistency.

2 Related Work
In this section, we briefly review the anti-aliasing techniques in

Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS).

2.1 Anti-aliasing in Neural Radiance Fields
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] is an implicit

3D representation that employs ray casting and volume rendering.

Barron et al. [2021, 2022] extend ray tracing to cone tracing and

propose the integrated positional encoding (IDE) to address alias-
ing and blurring induced by multi-resolution inputs. Unlike explicit
representations, NeRF relies solely on the optimization of network

parameters and benefits from the interpolation capability of MLPs,

eliminating both the need for densification and associated splitting

artifacts. However, these same characteristics also account for its

significant computational overhead. Zip-NeRF [Barron et al. 2023]

and Tri-MipRF [Hu et al. 2023] combine cone tracing with an ef-

ficient grid-based representation [Müller et al. 2022] to improve

performance. Rip-NeRF [Liu et al. 2024] propose to represent the

faces of a Platonic solid by Ripmap Encoding, such that the projected

anisotropic 2D areas can be precisely and efficiently featurized by

the anisotropic area-sampling. Unfortunately, these anti-aliasing

methods still cannot achieve real-time rendering.

2.2 Anti-aliasing in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] is an explicit 3D

representation that achieves real-time and photo-realistic rendering.

However, it still suffers from a variety of artifacts, such as pop-

ping and needle-like artifacts, and faces challenges in rendering

quality. StopThePop [Radl et al. 2024] systematically resorts and

culls splats to alleviate the popping artifacts induced by depth-based
sorting. Hahlbohm et al. [2025] introduce hybrid transparency to

3D Gaussians and approximate the accurate blending per-pixel. Ye

et al. [2025] propose a novel representation that combines the surfel

with Gaussian primitives, supporting sorting-free rendering. Pop-

ping artifacts fundamentally stem from view inconsistency as well.

However, unlike our target problem, they originate from rotating

views rather than zooming in. Huang et al. [2024] formally ana-

lyze the projection errors induced by local affine approximation and

propose an optimal projection strategy to mitigate them. Tu et al.

[2024, 2025] combine these techniques [Fang andWang 2024; Huang

et al. 2024; Radl et al. 2024] with an efficient foveated rendering

routine, providing an immersive and artifact-free VR experience.

Projection errors mainly manifest in zoom-out cases, making them

also fundamentally orthogonal to our target problem.

Some studies which attempt to address the blurring induced by
densification and optimization [Bulò et al. 2024; Kheradmand et al.

2024; Zhang et al. 2024b,a] and the dilation and erosion induced by
filtering [Liang et al. 2024; Song et al. 2024; Yu et al. 2024] are more

pertinent to our focus. Unfortunately, these approaches all neglect

the anisotropy of 3D Gaussians, still causing needle-like artifacts
in high-frequency regions when zooming in. EVSplitting [Feng et al.

2024] derives the closed form solutions for Gaussian splitting to gen-

erate plausible slicing results, but it still relies on the conventional

splitting condition during training. Our 3D shape-aware splitting is

dedicated to regularization during training rather than training-free
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Fig. 2. Visualization of Gaussians with the same spectral radius but

different shapes. The spectrum of the 3D Gaussian is characterized by
𝑠1, 𝑠2, 𝑠3 (top row), while the 2D Gaussian is characterized by 𝑠1, 𝑠2 (bottom
row). From left to right, as the spectral entropy decreases and the condition
number increases, the Gaussians transition from isotropic to anisotropic.

editing. Therefore, employing lightweight spectral analysis instead

of the computationally expensive error function (erf) is well justified.

Although Xie et al. [2024] and Hyung et al. [2024] also incorporate

the shape regularization during training, our theoretical analysis

and experiments reveal that covariance regularization in the loss

cannot activate the densification mechanism. Consequently, while

these approaches mitigate needle-like artifacts when zooming in,

the results become overly smoothed and loss details.

3 Methodology

3.1 Preliminaries
Representation and projection. 3D Gaussian Splatting [Kerbl et al.

2023] constructs a scene representation using volumetric primi-

tives G3𝐷 (·), each characterized by position 𝝁, a covariance matrix

𝚺 (decomposed into scale S ∈ R3×3
and rotation R ∈ SO (3), i.e.,

𝚺 = RSS⊤R⊤), opacity 𝑜 , and spherical harmonics coefficients SH (·).
The 3D primitives are projected to 2D image space through a Ja-

cobian matrix J ∈ R2×3
for the local affine approximation after

being transformed to the camera space via a viewing transforma-

tion matrixW. Then 2D Gaussians G2𝐷 (·), each characterized by

the position 𝝁proj and a covariance matrix 𝚺proj = JW𝚺W⊤J⊤, are
rasterized using 𝛼-blending.

Optimization and densification. 3DGS [Kerbl et al. 2023] employs

a loss function that combines L1 loss with a D-SSIM term:

L = (1 − 𝜆1)L1 + 𝜆1LD-SSIM . (1)

For this loss can only optimize the parameters of Gaussian primitives

but cannot change the number of primitives, phenomena such as

“over-reconstruction” (regions where Gaussians cover large areas

in the scene) and “under-reconstruction” (regions with missing

geometric features) can occur. To address this, 3DGS introduces an

adaptive densification scheme. For Gaussians with large view-space

positional gradients ∇𝝁proj
L, the scheme chooses between clone and

split strategies based on the scale of Gaussians. After splitting, the

shape remains unchanged, with the scale being
1

𝑘
of the original.

Filtering and Mip-Splatting. To prevent projected Gaussians from

becoming too small to cover an entire pixel, 3DGS uses an EWA

filter [Zwicker et al. 2002] for training stability:

G2𝐷
𝑘

(u)
EWA

= 𝑜𝑒−
1

2
(u−𝝁proj)⊤ (𝚺proj+𝜎I)−1 (u−𝝁proj)

(2)

where u is the pixel coordinate, I is a 2D identity matrix, 𝜎 is a scalar

hyperparameter to control the size of the filter, and G2𝐷
𝑘

(·)
EWA

is

the EWA filtered Gaussian.

To limit the maximal frequency for the 3D representation, Mip-

Splatting [Yu et al. 2024] applies a 3D smoothing filter G
low

to the

3D Gaussians G3𝐷
, ensuring that the regularized Gaussians cover

at least one pixel in all training views:

G3𝐷
𝑘

(x)
reg

=

(
G3𝐷 ⊗ G

low

)
(x)

= 𝑜

√√√ |𝚺|���𝚺 + 𝜎
𝜈𝑘

· I
���𝑒− 1

2
(x−𝝁 )⊤

(
𝚺+ 𝜎

𝜈̂𝑘
·I
)−1

(x−𝝁 )
.

(3)

Here, the scale
𝜎
𝜈
of the 3D filters for each primitive are different

as they depend on the training views in which they are visible. In

addition, the box filter of a function is equivalent to the integral

over the corresponding region, while the convolution of Gaussians

remains a Gaussian. Hense, Mip-Splatting [Yu et al. 2024] proposes

a 2D Mip filter Gmip to approximate the integral or super-sampling

within a pixel:

G2𝐷
𝑘

(u)
Mip

=

(
G2𝐷 ⊗ Gmip

)
(u)

= 𝑜

√√ ��
𝚺proj

����
𝚺proj + 𝜎I

��𝑒− 1

2
(u−𝝁proj)⊤ (𝚺proj+𝜎I)−1 (u−𝝁proj)

(4)

where G2𝐷
𝑘

(·)
Mip

is the 2D Mip filtered Gaussian. To compute

the Gaussian integral within a pixel more analytically, Analytic-

Splatting [Liang et al. 2024] derives the cumulative distribution

function (CDF) of the Gaussians, replacing the 2D Mip filter used to

approximate a box filter.

3.2 Spectral Analysis of 3D Gaussian Splatting
In this section, we first perform spectral analysis to 3DGS and show

loss-sensitivity and shape-unwareness in densification, and view-

inconsistency in filtering.

Spectra of Gaussians. The covariance matrix 𝚺 of a 3D/2D Gauss-

ian is analogous to describing the configuration of an ellipsoid/el-

lipse. For example, the covariance matrix of 3D Gaussian can be

eigendecomposed as follows:

𝚺 = RSS⊤R⊤ = R
(
SS⊤

)
R−1 = Rdiag

(
𝑠2
1
, 𝑠2
2
, 𝑠2
3

)
R−1

(5)

where the rotation matrix R is an orthogonal matrix (R⊤ = R−1
),

3𝑠1, 3𝑠2, 3𝑠3 represent the lengths of the ellipsoid’s three axes (3𝜎

rule) [Kerbl et al. 2023], and 𝑠2
1
, 𝑠2
2
, 𝑠2
3
are the eigenvalues (spectrum)

of 𝚺. The spectral radius of the covariance matrix 𝚺 is derived as:

𝜌 (𝚺) = max

(
𝑠2
1
, 𝑠2
2
, 𝑠2
3

)
(6)
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Fig. 3. Illustration of the optimization and densification of Gaussians

in 3DGS. Correct Gaussians: When view-positional gradients ∇𝝁projL
exceed a certain threshold 𝜏loss, 3DGS decides to clone or split based on the
Gaussian’s spectral radius 𝜌 (𝚺) . Needle-like Gaussians: However, 3DGS
does not split Gaussians with low spectral entropy but small gradients.

and can be used to measure the scale of the Gaussian. Addition-

ally, the condition number and spectral entropy [Shannon 1948;

Von Neumann 2018; Wei et al. 2024] are respectively

𝜅 (𝚺) = 𝜌 (𝚺)
𝜌min (𝚺)

=

max

(
𝑠2
1
, 𝑠2
2
, 𝑠2
3

)
min

(
𝑠2
1
, 𝑠2
2
, 𝑠2
3

) , (7)

H (𝚺) = tr

(
− 𝚺

tr (𝚺) ln
𝚺

tr (𝚺)

)
= −

3∑︁
𝑖=1

𝑠2
𝑖

tr (𝚺) ln
𝑠2
𝑖

tr (𝚺) , (8)

where tr (𝚺) = 𝑠2
1
+𝑠2

2
+𝑠2

3
. These metrics can be used to measure the

shape or degree of anisotropy of the Gaussian. In Fig. 2, we visualize

different 3D/2D Gaussians with the same spectral radius.

It is easily proven that when 𝑠1 = 𝑠2 = 𝑠3, the condition number

is minimized and the spectral entropy is maximized. Furthermore,

the eccentricity 𝑒 of the ellipse described by 𝚺 of the 2D Gaussian

satisfies 𝑒 =
√︃
1 − 1

𝜅 (𝚺) , which indicates that a higher condition

number corresponds to a sharper shape of the Gaussian as shown in

Fig. 2. And the needle-like artifacts correspond to Gaussians with a

low spectral entropy and a high condition number. In characterizing

the shape of 3D Gaussians, spectral entropy is more exact than

the condition number. However, the condition number is more

suitable for derivations and calculation, especially in the case of 2D

Gaussians. Please refer to the detailed proofs and analysis in the

supplementary materials.

Loss-sensitivity and shape-unawareness in densification. In Sec. 3.1,
we have briefly introduced the optimization and densification in

3DGS [Kerbl et al. 2023]. Here, we further analyze the spectra of the

Gaussians involved in the densification. As shown in Fig. 3, 3DGS

1

zoom in

co
nd

it
io

n 
nu

m
be

r

train view test view

(focal length/depth)2

Fig. 4. The condition number and rendering results when zooming

in.We fix the condition number 𝜅 (𝚺) = 144 during training. Due to view-
inconsistency of filtering, the train view still produces plausible rendering

results, but the test view with higher 𝑓 2𝑥

𝜇2𝑧
shows needle-like artifacts.

employs densification to grow the quantity of Gaussians when

the loss gradient ∇𝝁proj
L exceed a certain threshold 𝜏

loss
. While

this approach effectively addresses issues of “over-reconstruction”

and “under-reconstruction”, it is highly sensitive to the design of

the loss function L and the chosen threshold 𝜏
loss

. Specifically,

when elongated Gaussians with low spectral entropy can fit high-

frequency textures or geometry with small loss in the training

views, the densification mechanism is not triggered. This can lead

to needle-like artifacts or high-frequency over-blurriness. Further-

more, even when splitting, the spectral entropy and the condition

number of the Gaussians remain consistent with that before the

split and does not significantly alleviate needle-like artifacts, i.e.,

𝜌

(
𝚺
split

)
= 1

𝑘2
𝜌 (𝚺) , 𝜅

(
𝚺
split

)
= 𝜅 (𝚺) ,H

(
𝚺
split

)
= H (𝚺).

View-inconsistency in filtering. In Sec. 3.1, we have provided a

brief introduction to the EWA filter [Zwicker et al. 2002] in 3DGS

and the 2D Mip filter in Mip-Splatting [Yu et al. 2024]. From Eqn. (2)

and 4, we observe that the two filters have identical covariance

matrices 𝚺
filter

= 𝚺proj + 𝜎I, differing only in the opacity term, i.e.,

𝑜 ≠ 𝑜

√︂
|𝚺proj |

|𝚺proj+𝜎I| . However, when zooming in, the Jacobian matrix J

changes, leading to a change in the projected covariancematrix 𝚺proj

while the filter kernel 𝜎I remains constant. This causes variations

in the condition number of 2D Gaussians after optimization:

𝜅 (𝚺train) =
𝜌

(
Jtrain𝚺

′
J⊤
train

)
+ 𝜎

𝜌min

(
Jtrain𝚺

′
J⊤
train

)
+ 𝜎

≠ 𝜅 (𝚺test) (9)

where 𝚺

′
= W𝚺W⊤

is the covariance matrix in the camera space

and 𝚺train = Jtrain𝚺
′
J⊤
train

+ 𝜎I, 𝚺test = Jtest𝚺
′
J⊤
test

+ 𝜎I denote the
covariance matrices during training and testing, respectively. We

have derived and visualized the variation curve of 𝜅 (𝚺
filter

) during
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Fig. 5. Overview of Spectral-GS. 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] decides whether to split based on the positional gradients and the spectral
radius of the covariance matrix without considering the shape of primitives. We propose the 3D shape-aware splitting strategy based on the spectral analysis
(3D Split). In screen space, both the EWA filter [Zwicker et al. 2002] of 3DGS which attempts to cover an entire pixel, and the Mip filter of Mip-Splatting [Yu
et al. 2024] which approximates supersampling, result in a reduction of spectral entropy when zooming in to synthesize novel view. Our view-consistent filter’s
kernel is not constant to maintain the spectral entropy consistency (2D Filter).

the zoom-in process. As shown in the upper part of Fig. 4, this

function increases as the camera zooms in, i.e., as the focal length

depth

increases. Please refer to the supplementary materials for detailed

derivations.

Due to the view-inconsistency in filtering, needle-like artifacts

become more pronounced when zooming in or when the camera

moves closer to the object, as illustrated by the rendering results in

the lower portion of Fig. 4.

3.3 Spectral-GS
Based on the spectral analysis for 3DGS [Kerbl et al. 2023] and

Mip-Splatting [Yu et al. 2024] in Sec. 3.2, we propose the 3D shape-

aware splitting and the 2D view-consistent filtering, respectively, to

address loss sensitivity and shape unawareness in densification, as

well as view inconsistency in filtering. The overview of our method

Spectral-GS is illustrated in Fig. 5.

3D shape-aware splitting. We propose the 3D shape-aware split-

ting to introduce shape-awareness into the optimization process.

As shown in Ours of 3D Split in Fig. 5, the splitting condition of

our strategy is based on the spectral entropy of 3D Gaussians H (𝚺).
When the spectral entropy falls below a certain threshold 𝜏

spectral

and may exhibit visually needle-like artifacts, 𝐾 points are sampled

based on the probability density function (PDF) of the old Gauss-

ian distribution G3𝐷 (x; 𝝁, 𝚺). The new Gaussian mixture distribu-

tions

∑
𝐾

G3𝐷
(
x; 𝝁

split
, 𝚺

split

)
aim to fit the old Gaussian distribu-

tion G3𝐷 (x; 𝝁, 𝚺) as closely as possible, preserving high-frequency

while increasing spectral entropy. Specifically, the reduction factor

of the covariance matrix is not isotropic but anisotropic. The greedy

algorithm reduces the spectral radius by the maximum extent:

𝚺
split

= Rdiag

(
1

𝑘2
1

𝑠2
1
,
1

𝑘2
2

𝑠2
2
,
1

𝑘2
3

𝑠2
3

)
R⊤, (10)

𝑘𝑖 = 𝑘 · 𝟙
{
𝑠2𝑖 = 𝜌 (𝚺)

}
+ 𝑘0, (11)

where 𝟙 {·} is an indicator function and 𝑘 > 0, 𝑘0 ≥ 1. Additionally,

to ensure that the condition number after splitting does not exceed

that before splitting, the following condition must be satisfied:

𝑘 < −𝑘0 +
𝑘0𝜌

3

2 (𝚺)√︁
|𝚺|

. (12)

Moreover, we prune Gaussians with extremely low spectral entropy

in a manner similar to how we handle those with low opacity, en-

suring that the number of Gaussians does not increase excessively

due to splitting.

2D view-consistent filtering. For novel view synthesis, the level of

scene detail is determined by the resolution of the training images.

The finer details revealed by zooming in actually correspond to

views that are not seen in the training set. Due to view-inconsistent

filtering, 3DGS [Kerbl et al. 2023] and Mip-Splatting [Yu et al. 2024]

produce pronounced artifacts when zooming in. The needle-like

artifacts amplified by zooming in resemble the pixelation artifacts

typically observed when upscaling low-resolution images. A widely

used and efficient strategy to ensure consistency between the origi-

nal and the upscaled image is interpolation. Motivated by this, we
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propose the 2D view-consistent filtering, which combining a con-

volution that approximates supersampling with a Gaussian blur

that approximates interpolation, as shown in Ours of 2D Filter
in Fig. 5. We first tend to approximate the integral of projected 2D

Gaussians within each pixel window area with the 2D Gaussian

filter like Eqn. (4):

G2𝐷
𝑘

(u)
Box

=

∬
U

G2𝐷 (u) du =

(
G2𝐷 ⊗ B

)
(u)

≈ G2𝐷
𝑘

(u)
Mip

=

(
G2𝐷 ⊗ Gmip

)
(u)

(13)

where B denotes the 2D box filter. Subsequently, we introduce the

Gaussian blur to achieve view-consistency of the condition number,

with the size of the convolution kernel given by:

𝚺
blur

=

(
JtestJ−1

train

)
𝜎I

(
JtestJ−1

train

)⊤
− 𝜎I. (14)

Note that the matrix Jtrain ∈ ℝ2×3
is not a full-rank square matrix;

J−1
train

∈ ℝ3×2
represents a left/right inverse of matrix Jtrain. Since

convolving two Gaussians with covariance matrices 𝚺1, 𝚺2 results

in another Gaussian with variance 𝚺1 + 𝚺2, we obtain the result of

combining the 2D box filter with Gaussian blur G𝑏𝑙𝑢𝑟 as follows:

G2𝐷
𝑘

(u)
filter

=

(
G2𝐷 ⊗ B ⊗ G𝑏𝑙𝑢𝑟

)
(u)

≈ 𝑜
filter

𝑒−
1

2
(u−𝝁proj)⊤𝚺filter

−1 (u−𝝁proj) ,
(15)

𝑜
filter

= 𝑜

√√√√√√ ��
𝚺proj

������𝚺proj + (
JtestJ−1

train

)
𝜎I

(
JtestJ−1

train

)⊤���� , (16)

𝚺
filter

= 𝚺proj +
(
JtestJ−1

train

)
𝜎I

(
JtestJ−1

train

)⊤
. (17)

Compared to the 2D Mip filter, our 2D view-consistent filter does

not use a constant kernel but instead employs a view-adaptive ker-

nel. We can also approximate Eqn. (17) using the filter kernel func-

tion 𝜎 (focal length, depth) = 𝜎0 focal length
2

depth
2

, where 𝜎0 is a constant.

Please refer to the detailed proofs in the supplementary materials.

Compared to Jtrain, the focal length and depth are more accessible

at both training and test time. The parameters from multiple views

can be reduced andmoving closer corresponds to a decrease in depth.

While our filter shares similarities with the 3D smoothing filter, their

underlying principles are fundamentally distinct. The 3D smoothing

filter in Mip-Splatting [Yu et al. 2024] is applied only during training

to ensure that the highest-frequency component of any Gaussian

does not exceed half of its maximum sampling rate for at least

one camera. In contrast, beyond considering supersampling, our

filter primarily focuses on preserving spectral entropy consistency

between training and testing views.

4 Experiments

4.1 Experiment Settings
Implementation details. We implement Spectral-GS based on the

PyTorch framework in 3DGS [Kerbl et al. 2023]. We use the default

parameters of 3DGS to maintain consistency with the original 3DGS.

For our approach, we empirically set the threshold 𝜏
spectral

in 3D

shape-aware splitting to 0.5, with 𝑘 = 0.6, 𝑘0 = 1 and 𝐾 = 2, and 𝜎0
in 2D view-consistent filtering to 0.1.

Datasets. We evaluate our approach on a total of 13 scenes, which

includes eight scenes from the Blender Dataset [Mildenhall et al.

2020] and four scenes from the Tanks & Templates [Knapitsch et al.

2017] and Deep Blending [Hedman et al. 2018]. Additionally, we

evaluate our method on the Ball from Verbin et al. [2022] with

modified textures to validate the relationship with frequency.

Baselines and metrics. We compare Spectral-GS with 3DGS [Kerbl

et al. 2023] and some current SOTA methods [Liang et al. 2024; Yu

et al. 2024; Zhang et al. 2024a]. In these experiments, Analytic.+3D

Filter refer to Analytic-Splatting [Liang et al. 2024] with the 3D

smoothing filter fromYu et al. [2024]. Standardmetrics such as PSNR,

LPIPS [Zhang et al. 2018], and SSIM are used for the evaluation.

Furthermore, we provide the spectral entropy to evaluate needle-

like artifacts and verify the correlation between the spectral entropy

of 3D Gaussians and the quality of novel view synthesis.

4.2 Results
Quantitative comparisons. We report quantiative results in Tab. 1.

All methods are evaluated across four focal lengths (i.e.1×, 2×, 4×,
8×) to mimic zoom-in effects. These results demonstrate that our

spectral analysis-based method effectively increases the spectral

entropy of scenes, thereby enhancing images’ quality.

Qualitative comparisons. As illustrated in Fig. 8 and Fig. 9, it can

be observed that our method is capable of generating more realistic

details, with fewer needle-like artifacts compared to other meth-

ods [Kerbl et al. 2023; Liang et al. 2024; Yu et al. 2024; Zhang et al.

2024a]. This is precisely the superiority brought about by our spec-

tral analysis-based method, which results in higher spectral entropy.

Computational costs. Regarding computational costs, our method

achieves roughly the same performance as the oringal 3DGS [Kerbl

et al. 2023] either in training or in inference. We provide a detailed

analysis as follows and report detailed timing benchmarks for both

training and inference in Tab. 4.

• Complexity analysis of 3D shape-aware splitting: Our
3D shape-aware splitting, compared to traditional 3DGS [Kerbl

et al. 2023], only adds a spectral entropy criterion and modi-

fies the splitting results. As a result, our method does not lead
to higher computational costs.

• Complexity analysis of 2D view-consistent filtering:
Both 3DGS [Kerbl et al. 2023] and Mip-Splatting [Yu et al.

2024] add a constant to the covariance of the 2D Gaussian in

screen space, while our method adds a variable. As a result,

there is no difference in runtime. Our method remains high
performance in real-time applications.

4.3 Discussions
Ablation study. We conduct ablation studies in the Ball scene, as

shown in Fig. 6 and Tab. 3. The observed needle-like artifacts are

composed of two parts: those inherent to the 3D scene and those

generated by the rendering algorithm. The artifacts inherent to the

scene are addressed by regulating the 3DGaussians’ spectral entropy
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Table 1. Quantitative comparisons on the Blender Dataset [Mildenhall et al. 2020]. All methods are evaluated across four focal lengths (1×, 2×, 4×,
and 8×), with evaluations at higher sampling rates simulating zoom-in effects.

PSNR ↑ SSIM ↑ LPIPS ↓
1× Foc. 2× Foc. 4× Foc. 8× Foc. Avg. 1× Foc. 2× Foc. 4× Foc. 8× Foc. Avg. 1× Foc. 2× Foc. 4× Foc. 8× Foc. Avg. Spectral Entropy↑

3DGS [Kerbl et al. 2023] 33.76 26.13 23.09 23.88 26.72 0.969 0.879 0.795 0.843 0.872 0.039 0.138 0.261 0.274 0.178 0.164

Mip-Splatting [Yu et al. 2024] 33.97 29.89 28.51 28.63 30.25 0.969 0.924 0.906 0.929 0.932 0.031 0.100 0.161 0.165 0.114 0.363

Pixel-GS [Zhang et al. 2024a] 33.93 26.11 23.07 22.56 26.42 0.970 0.875 0.793 0.829 0.867 0.029 0.133 0.261 0.293 0.179 0.151

Analytic-Splatting [Liang et al. 2024] 34.02 29.29 27.78 27.68 29.69 0.970 0.911 0.863 0.860 0.901 0.030 0.119 0.218 0.263 0.158 0.227

Analytic.+3D Filter [Liang et al. 2024] 33.89 29.88 28.48 28.79 30.26 0.970 0.924 0.907 0.927 0.932 0.031 0.101 0.160 0.174 0.117 0.320

Ours 34.02 30.04 29.10 29.61 30.69 0.972 0.927 0.923 0.936 0.940 0.026 0.088 0.140 0.154 0.102 0.946

Table 2. Quantitative comparisons on the Tanks & Templates [Knapitsch et al. 2017] and Deep Blending [Hedman et al. 2018]. All methods are
evaluated across four focal lengths (1×, 2×, 4×, and 8×), with evaluations at higher sampling rates simulating zoom-in effects.

PSNR ↑ SSIM ↑ LPIPS ↓
1× Foc. 2× Foc. 4× Foc. 8× Foc. Avg. 1× Foc. 2× Foc. 4× Foc. 8× Foc. Avg. 1× Foc. 2× Foc. 4× Foc. 8× Foc. Avg. Spectral Entropy↑

3DGS [Kerbl et al. 2023] 26.47 27.48 27.34 27.43 27.18 0.879 0.881 0.882 0.879 0.880 0.193 0.217 0.245 0.228 0.221 0.289

Mip-Splatting [Yu et al. 2024] 26.49 27.40 28.09 28.08 27.52 0.880 0.893 0.903 0.913 0.897 0.183 0.201 0.211 0.195 0.198 0.422

Pixel-GS [Zhang et al. 2024a] 26.82 27.18 27.00 27.32 27.08 0.879 0.880 0.880 0.896 0.884 0.182 0.211 0.246 0.232 0.218 0.301

Analytic-Splatting [Liang et al. 2024] 26.49 27.76 28.02 27.82 27.52 0.876 0.891 0.899 0.904 0.893 0.188 0.203 0.228 0.210 0.207 0.335

Analytic.+3D Filter [Liang et al. 2024] 26.75 27.92 28.21 28.01 27.72 0.881 0.894 0.903 0.910 0.897 0.192 0.203 0.215 0.200 0.203 0.380

Ours 26.75 27.97 28.49 28.53 27.94 0.881 0.907 0.910 0.931 0.907 0.172 0.180 0.192 0.164 0.177 0.815

(a) Ground-truth

(e) Ours Full(d) w/o 2D Filter(c) w/o 3D Split,w/ ℒΣ

(b) w/o 3D SplitScene

Fig. 6. Qualitative ablation studies. From (a) to (e): ground truth (a), our
method without 3D split (b), our method without 3D split but with L

𝚺
(c),

our method without 2D filter (d), and the full version of our method (e).

Table 3. Quantitative ablation studies.

3D Split L
𝚺

2D Filter PSNR↑ SSIM↑ LPIPS↓ Spectral Entropy↑
✗ ✗ ✓ 28.98 0.877 0.259 0.444

✗ ✓ ✓ 28.26 0.860 0.313 0.817

✓ ✗ ✗ 28.45 0.865 0.233 0.997
✓ ✗ ✓ 29.58 0.894 0.197 0.997

through our 3D splitting (b)(e), while the artifacts caused by render-
ing are resolved by maintaining condition number consistency via

our 2D filtering (d)(e). Moreover, 3D splitting, which does not rely

on loss gradients, enhances the representation of high-frequency

details in the scene. Recall that 3DGS [Kerbl et al. 2023] is sensitive

to loss and lacks shape-awareness. Another idea is to introduce a

regularization term L
𝚺
into the loss function that accounts for 3D

Ground-truth

PSNR:22.43dB PSNR:30.21dB PSNR: 31.46dB

3DGS Mip-Splatting Ours
(a

)
(b

)
(c

)

Fig. 7. We conduct experiments on Ball with identical geometry but

different textures. From top to bottom, they are the monochrome textured
(a), multicolor textured (b), and high-frequency textured (c). The red curves
intuitively represent the corresponding frequency characteristics.

Gaussians’ shape:

Lnaive = (1 − 𝜆1)L1 + 𝜆1LD-SSIM + 𝜆2L𝚺
. (18)

However, although this regularization term is able to effectively

constrain and optimize the shape of Gaussians (H (𝚺) = 0.817 >

0.444), it does not affect densification since the gradient with respect

to 𝝁proj is zero:

∥∇𝝁proj
L
𝚺
∥𝐹 = 0, ∥∇

𝚺
L
𝚺
∥𝐹 ≠ 0, (19)

∥∇𝝁proj
Lnaive∥𝐹 = ∥∇𝝁proj

L∥𝐹 , (20)
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Ground-truth 3DGS Mip-SplattingOurs Analytic.+3D FilterAnalytic.

Lego

Hotdog

Fig. 8. Qualitative comparisons on the synthetic scenes [Mildenhall et al. 2020]. Differences in quality highlighted by insets.

OursGround-truth 3DGS Mip-Splatting

OursGround-truth

Truck

3DGS Mip-Splatting

Dr Johnson

Pixel-GS

Pixel-GS

1.0

0.5

0.0

Fig. 9. Qualitative comparisons on the real scenes [Hedman et al. 2018; Knapitsch et al. 2017].We visualize the spectral entropy maps of 3D Gaussians.
Bluer regions indicate lower spectral entropy, with more needle-like degraded Gaussians, while greener regions represent higher spectral entropy.
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3DGSMip-SplattingOurs

zo
om

 in
(f

oc
al

 le
ng

th
/d

ep
th

)2

Analytic-Splatting+3D Filter

Chair

Fig. 10. We present results from different methods at various sampling rates (focal lengths) on Chair. The images are ordered from top to bottom,
corresponding to the transition from the training focal length to larger focal lengths (zoom in).
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Table 4. Training time and FPS comparisons. We report the corre-
sponding image quality, spectral entropy (i.e., Ent) and efficiency metrics.
Synthetic scenes are from the Blender Dataset [Mildenhall et al. 2020], and
real scenes from the Tanks & Templates [Knapitsch et al. 2017] and Deep
Blending [Hedman et al. 2018]. For fairness, we also report results with
training time and the number of Gaussians equal to ours, marked with *.

Dataset Method PSNR
↑

SSIM
↑

LPIPS
↓

Ent
↑

Train FPS

Synthetic Scenes

3DGS 26.72 0.872 0.178 0.164 9m24s 292

3DGS
∗

26.76 0.881 0.181 0.162 - 239

Mip-Splatting 30.25 0.932 0.114 0.363 9m58s 249

Mip-Splatting
∗

30.22 0.932 0.113 0.369 - 230

Ours 30.69 0.940 0.102 0.946 10m09s 236

Real Scenes

3DGS 27.18 0.880 0.221 0.289 31m27s 116

3DGS
∗

27.29 0.881 0.213 0.292 - 97

Mip-Splatting 27.52 0.897 0.198 0.422 32m44s 112

Mip-Splatting
∗

27.48 0.900 0.201 0.433 - 99

Ours 27.94 0.907 0.177 0.815 32m58s 99

which can lead to loss of high-frequency details (c)(e). Thus, the
related work with the regularization term [Hyung et al. 2024] also

tends to loss details compared to our full method.

Relationship with frequency. It is worth noting thatMip-Splatting [Yu

et al. 2024] outperforms 3DGS [Kerbl et al. 2023] in both spectral

entropy and image quality metrics, suggesting a relationship be-

tween the 3D smoothing filter based on frequency analysis and ours

spectral analysis. Firstly, it is straightforward to prove that the 3D

smoothing filter in Mip-Splatting increases the spectral entropy of

the original Gaussian. Secondly, we know that Gaussian functions

are closed under the Fourier transform (FT) [Nussbaumer and Nuss-

baumer 1982], while the covariance in the frequency domain is the

inverse in the spatial domain (scaled by a coefficient):

F {G (x)} = 𝑒−2𝜋
2𝝎⊤

𝚺𝝎
(21)

where F denotes the Fourier transform. The eigenvalues of the co-

variance matrix determine the bandwidth of the frequency spectrum.

Larger eigenvalues result in a narrower spectrum in the correspond-

ing direction, while smaller eigenvalues lead to a wider spectrum in

that direction. Therefore, the spectral analysis of our covariance ma-

trix is equivalent and unified with the frequency spectrum analysis

of the Gaussian. We conduct experiments with fixed geometry on

Ball with different textures to demonstrate that needle-like artifacts

predominantly occur in high-frequency scenes, as shown in Fig. 7.

And our method effectively addresses the challenge of representing

high-frequency details with Gaussians without artifacts.

Impacts of zooming in. To further validate the robustness of our

method when zooming in, we conduct a series of experiments. As

shown in Fig. 10, these methods produce nearly identical novel

view synthesis results at the training view’s focal length. However,

when the focal length and sampling rate increase, 3DGS suffers

from severe needle-like artifacts, leading to a notable decline in

rendering quality. While Mip-Splatting and Analytic-Splatting show

less degradation due to their use of a series of filters, the rendering

results are blurred. In contrast, we maintain high quality similar

to lower sampling rates, without needle-like Gaussians or loss of

high-frequency details.

5 Conclusion
We propose Spectral-GS, a modification to 3DGS, which introduces

3D scale-aware splitting and 2D view-consistent filtering strategies,

based on our spectral analysis, to achieve needle-like-alias-free

rendering at arbitrary close-up or zoomed-in view. Our splitting

strategy effectively regularizes needle-like Gaussians and increase

the spectral entropy, enhancing the high-frequency details repre-

sentation for 3DGS and mitigating needle-like artifacts. And the 2D

view-consistent filter combines a convolution that approximates

supersampling with a Gaussian blur that approximates interpolation

to resolve needle-like artifacts caused by view-inconsistency.

Limitation. Since ourmethod does not introduce additional priors,

such as image super-resolution networks [Dong et al. 2015], the

resolution of novel views depends on the input images.
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