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A Proofs in Spectral Analysis of Gaussians
A.1  Spectral Analysis of Matrices

Mathematically, the spectrum of a matrix refers to the set of its
eigenvalues [Eisenbud 2013; Golub and Van Loan 2013; Zill 2020].

Eigenvalue (Spectrum). A matrix A € RN*N

posed as follows:

can be eigendecom-

A=0QAQ7! (1)

where A = diag (41,42, ...,AN) is the diagonal matrix whose di-

agonal elements are the corresponding eigenvalues, A;; = A;. The

trace of A, denoted tr (A), is the sum of all eigenvalues, ie., tr (A) =

Zﬁi 1 Ai- And the determinant of A, denoted det (A) or |A], is the
product of all eigenvalues, i.e, det (A) = |[A| = Hfil Ai.

Spectral radius. In mathematics, the spectral radius p (-) of a

square matrix A is the maximum of the absolute values of its eigen-
values:

p(A) = max (|A1],|22], ... |AN]) - @
The eigenvector corresponding to the spectral radius of A is com-

monly referred to as the principal eigenvector.
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Condition number. The condition number « (-) of a function quan-
tifies the sensitivity of the function’s output to small perturbations
in its input. When selecting the spectral radius as the matrix norm
(spectral norm), the condition number of a normal matrix A is:

_ p(A)
x (A) = [|A7Y| 1A = == 3
() = | i = 2 ©)
where ppyin (A) = min (JA41], |A2],...,|AN]) is the minimum of the

absolute values of the eigenvalues.

Spectral entropy [Roy and Vetterli 2007; Shannon 1948; Von Neu-
mann 2018; Wei et al. 2024]. Let A be a positive semi-definite matrix
(V0 <i <N, 4 > 0) and the trace of A be positive (tr (A) > 0).
Then the matrix K = ﬁ satisfies tr (K) = 1. The spectral entropy
H (") is:

N
H(A) = tr (-KInK) = —Z

i=1

Ai Ai

tr (A) In tr(A)’ )

A.2  Maxima and Minima in Spectral Analysis

This section will provide a detailed proof that the condition number
is minimized and the spectral entropy is maximized when s; = s3 =
S3.

Condition number. It is evident that the spectrum of the Gaussian
satisfies the following inequality:

0 < min (sf, sg,sg) < max (s%,sg, sg) . (5)
Consequently, the condition number satisfies
2 2 2
max (51,32,53)

2 2 2
min (31,32,33)

k(%)= > 1, (6)

s
1°°2°°3
can conclude that the condition number of ¥ is minimized when

with equality iff max (52 2 32) = min (sf, sg,sg). Therefore, we

S1 = 2 = S§3.
Spectral entropy. Using the 3D Gaussian as an example, we aim
to find the maximum value of the spectral entropy in Eqn. (8) of
2
the paper. Let t; be 35—’2 It is evident that this is a constrained

=155
optimization problem

3 3
arg max H(X) = — Z tilnt;, st Z =1 7)

11,1, < n
LEE i=1 i=1
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which can be solved using the method of Lagrange multipliers as
below:

t1,12,13

arg max (11,12, 13,2) = - Ztllnt,m(ztl—l) (8)

where A is the Lagrange multiplier. Now we can calculate the gradi-
ent:

OF oF OF oF
\Y ttg 3, ) = | —, —, —, — ?
o (b1, 12,13, 0) (tl 7 A) ©)
and therefore:
A=Int; +1
A=Intr+1
VitpeaF (12, 13,0) = 0 = - (10
ttots AT (112,13, 2) A=Ints+1 .
Z?:1ti:l

In summary, we can conclude that the spectral entropy of X is
maximized when t; = t2 = £3 (s = s2 = s3).
A.3  Relationship Between k (-) and H (+)

We can express the spectral entropy H (X) as a function of the
condition number k (X) for the 2D Gaussian:

2 §2 §2 §2
H(Z)=- lzln 212_ 222ln 222
s{+ss  sy+ss  s{+sy  s{+sh (1)
k(Z)Ink (%)
=1 »N+1) - ————=
ne@+D - =5
Then we calculate the derivative:
dH (2) Inx (%)
=- <0, wherek (X) > 1, 12
die (Z) (k (%) +1)? =) (12)

which indicates that the spectral entropy of a 2D Gaussian decreases
as the condition number increases. We visualize this function in
Fig. 1a.

For the 3D Gaussian, assumlng without Ioss of generality that

s1 <52 < s3,wehavek (X) = 3 andletn = —Z We can similarly
1

derive the function for the 3D Gaussmn
kK (Z)Ink (Z)+nlnp

HZE)=In(k(XZ)+np+1) - Y

(13)
and visualize the function in Fig. 1b.

A.4  View-Inconsistency in Filtering

The Jacobian matrix of the local affine approximation is as follows:

e et e 1 0 £
Al B A Bl
=0 £ _fw|Ty £ oo Y TE| @9
Hz e Hz 0 0 1

where fy, f, denote the intrinsic parameters of the camera model

and y, = [/,tx Hy ,uz] T is the position of the 3D Gaussian in the
camera space. We assume that the position of the Gaussian projected
Hx Hy
Hz’ Mz
camera zoom-in. Since the covariance matrix in the camera space

A
onto the z = 1 plane, i.e., ] , remains unchanged during the
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Fig. 1. Visualization of the function H (£) = f (x (X)) for the 2D Gaussian

and H (Z) = f (x (%, n)) for the 3D Gaussian.

’
Y also remains unchanged when zooming in, the following matrix
is a constant matrix

1 0 —”—z 1 0 _E a b c
To=loo1 B4 o 1 -] =10 d e (15)
00 1 0 0 1 c e f
where a,b,c,d, e, f € [0,+00). Then we obtain:
+ a_f,? bfxfy
_ 1y T ~ HE H
Iflter =JX ] +ol= bfxfy df; . (16)
— o0t —
Hz Hz
Then we can compute the condition number of the matrix:
%tr (Zfitter) + \/%tr2 (Cfiter) — 1Zfilter|
K (Zfiter) = . ;
Etr (Zﬁlter) - \/Ztr2 (Zﬁlter) - |Zﬁlter|
2
fi fi | £
20 + a+d?yz+\/( dfi’) +4b2£ i_% (17)

2
d];z) +4b2§z L



2
which is a function of f—’; due to the other values remaining constant

during the camera zoom-in. And the derivative of the function is:

4
dk (Zf-‘;lter) — pO' - -0 (18)
d% 20+ |a+d L) &
= 7P
AN
where p = (a -d ]TZ) +4b? f% This indicates that the condition

number of a 2D Gaussian increases when zooming in the camera
(increasing the Z—’;) And according to the relationship between
spectral entropy and the condition number derived in Sec. A.3, the
spectral entropy H (Zgjeer) also decreases when zooming in the

2
camera. The curve of k (Zgjier) as a function of I% is visualized in
'z

Fig. 4 of the paper.

A5 kin 3D Shape-Aware Splitting

For the 3D Gaussian, assuming without loss of generality that s; <
s2 < s3, we can derive the following:

2 2

S3 S2

X L
( (k+ko)? kg)

K (Zsplit) e ——
min( > > )

1

—3 L
(k+ko)?” k2

kZs? o ktko _ 53 ) (19)
(k+ko)®s?’ ko — s2
2
=12 if 5« Ktk o5
T s® lfsz < ko < s1
(ktko)®s: .o ktky _ s3
pral e
55
51
Clearly, we have:
k22 52 sz 52
— 0 <2 k@), Z<3=x>). (1)
(k+ko)®sy 57 s] 8y

And when Eqn. (12) in the paper is satisfied, we can derive the
following:

ktko _p2 () _ %

=3 22
ko =] s2s1 22
EAR
(k +ko)? 52 ses1] %2 2
o 2 < — ===k, (23)
053 S3 51

In summary, we can conclude that the condition number after split-
ting does not exceed that before splitting, i.e., k (Zsplit) < k(X),
when Eqn. (12) in the paper is satisfied.
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A.6 2D View-Consistent Filtering Kernel

We prove the view-consistency of our filter:

p (Jieain® T in) + p (0D)
K (Ztrain) =

Pmin (Jtrainz,.];ain) + Pmin (0T)

P (Jtestz/_];;st) +p ((Jtest_]t_r;in) ol (Jtestjt_r;in)T)

pmin (Tiest™ Tt ) + Ponin ((Jtesat;;in) ol (Jtesd;;m)T) (24)

p i)+ ((eslihy) ot ezl

T
Pmin (Ztest) + Pmin ((Jtest.];r;in) ol (Jtest]t;;in) )
= Kk (Ztest) -
2
In Sec. A.4, when o « LL’; the function x (Zgjter) and H (Zgjier) are
constant. Therefore, we can approximate this operation using the

2
filter kernel function o (fx, jiz) = 0o i—’; where oy is a constant.

B Spectral-GS Algorithm

Our method is summarized in Algorithm 1 and Algorithm 2. We
mark the enhancements in related methods [Bulo et al. 2024; Huang
et al. 2024b; Hyung et al. 2024; Kheradmand et al. 2024; Radl et al.
2024; Tu et al. 2025] to show their orthogonality to our approach.

C Details of Experiments
C.1 Additional Comparisons

Figures 4-7 illustrate additional qualitative comparisons over the
Blender Dataset [Mildenhall et al. 2020], Deep Blending [Hedman
et al. 2018], scenes captured by ourselves and the Mip-NeRF 360
Dataset [Barron et al. 2022]. Differences in quality are highlighted
by insets. For better comparison, the metrics are annotated below
some images. Tables 1-2 list LPIPS and spectral entropy for our
evaluation over all considered approaches and scenes [Hedman et al.
2018; Knapitsch et al. 2017; Mildenhall et al. 2020].

Table 1. The LPIPS] and spectral entropyT scores for each scene of the
Blender Dataset [Mildenhall et al. 2020].

LPIPS| ‘Hotdog Chair Ship Lego Materials Drums Ficus Mic Avg.
3DGS [Kerbl et al. 2023] ‘ 0.204 0.213 0.310 0.189 0.141  0.190 0.111 0.063 0.178
Mip-Splatting [Yu et al. 2024] 0.126 0.114 0.216 0.111  0.113 0.139 0.065 0.031 0.114
Pixel-GS [Zhang et al. 2024] 0.210 0.215 0.312 0.192 0.146  0.196 0.100 0.063 0.179

Analytic-Splatting [Liang et al. 2024] | 0.165 0.174 0.282 0.150 0.141  0.177 0.120 0.053 0.158
Analytic.+3D Filter [Liang et al. 2024] 0.133 0.112 0.219 0.119  0.115 0.139 0.071 0.031 0.117
Ours 0.099 0.098 0.196 0.098 0.100  0.134 0.063 0.028 0.102

Spectral EntropyT ‘Hotdog Chair Ship Lego Materials Drums Ficus Mic Avg.

3DGS [Kerbl et al. 2023] 0.152 0.083 0.141 0.189  0.242  0.138 0.281 0.088 0.164
Mip-Splatting [Yu et al. 2024] 0.339 0.397 0.338 0.361 0.397  0.378 0.459 0.238 0.363
Pixel-GS [Zhang et al. 2024] 0.141 0.086 0.131 0.170  0.193  0.141 0.271 0.078 0.151

Analytic-Splatting [Liang et al. 2024] | 0.234 0.222 0.210 0.241  0.285  0.212 0.260 0.170 0.227
Analytic.+3D Filter [Liang et al. 2024]| 0.332 0.390 0.334 0.354 0.397  0.252 0.332 0.170 0.320
Ours 0.697 0.992 0.996 0.970  0.967  0.969 0.986 0.991 0.946
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Algorithm 1 Spectral-GS Algorithm
W, H: width and height of the training or testing images

M, S, C, O « Gaussians()
if is testing then
V « TestingView()
My, Sp — SplatGaussian(W, H, M, S, V) » Can be combined
with other methods [Huang et al. 2024a; Tu et al. 2025]
S £ Of — SpectralBasedFiIter(Sp, 0,V) > Filter, Ours
DepthBasedRadixSort(Mp, Sf, Of, C, M) » Can be combined
with Radl et al. [2024]
I « Rasterize(W, H, My, Sf, C, Of, V)
else
i—20 > Iteration Count
while not converged do
V, I « TrainingView() > Camera and Image
My, Sp — SplatGaussian(W, H, M, S, V) > Can be
combined with other methods [Huang et al. 2024a; Tu et al. 2025]
S £ Of — SpectralBasedFilter(Sp, 0,V) > Filter, Ours
DepthBasedRadixSort(Mp, Sf, Of, C, M) > Can be
combined with Radl et al. [2024]
I < Rasterize(W, H, Mp, S¢, C, Oy, V)
£ — Loss(I,]) > Compute Loss, can be combined
with Hyung et al. [2024]; Xie et al. [2024]
M,S,C,0 « Adam(VL) > Backprop & Step, can be
combined with Kheradmand et al. [2024]
if IsRefinementlteration(i) then
for all Q3D(p, ¥, ¢0)in (M,S,C,0) do
if 0 < ¢, or IsInvalidSpectrum(o, ) then
SpectralBasedPruneGaussian()
end if
if ”Vupmj-£||F > Tjoss then
combined with Zhang et al. [2024]
if p () > tradius then
LossBasedSplitGaussian(p, %, ¢, 0)
else > Clone
LossBasedCloneGaussian(y, X, c, 0)
end if
end if
if H(Z) < Topectral then > Densify, Ours
SpectralBasedSplitGaussian(y, %, ¢,0) > Ours
end if
end for
end if
i—i+1
end while
end if

> Pos, Covs, Colors, Opacs

> Ours
> Densify, can be

> Split

C.2 Additional Discussions

Number of Gaussians. Since our 3D shape-aware splitting in-
creases the number of Gaussians to capture high-frequency details
and prunes degenerated Gaussians with excessively low spectral
entropy directly, we conduct additional quantitative experiments
regarding the number of Gaussians and image quality. As shown
in Fig. 2, our method outperforms others [Kerbl et al. 2023; Yu et al.

ACM Trans. Graph., Vol. 44, No. 6, Article 1. Publication date: December 2025.

Algorithm 2 SpectralBasedSplitGaussian
1, Z, ¢, 0: position, covariance, color and opacity
k, ko, K: splitting hyperparameters
B p2, - px ~ N (B X)
foric [1,3] do
ki—k-1{s?=p ()} +ko

> Sampling based on the PDF

> Anisotropic coefficient

end for

01,02, -+ ,0K < 0> Can be combined with other methods [Bulo
et al. 2024; Kheradmand et al. 2024]

C1,C2,"** ,CK < ¢C

R s1,82,83 < X > Eigendecompose

$1,%s,..., 2k < Rdiag (kilzsf, klgsg, és%) RT

Table 2. The LPIPS] and spectral entropy? for each scene of Tanks & Tem-
plates [Knapitsch et al. 2017] and Deep Blending [Hedman et al. 2018].

LPIPS] Spectral EntropyT
Train Truck Drjohnson Playroom|Train Truck Drjohnson Playroom
3DGS [Kerbl et al. 2023] 0232 0.221 0215 0215 [0.316 0.254 0311 0.276
Mip-Splatting [Yu et al. 2024] 0.212 0.166 0.213 0.201 [0.416 0.544 0.377 0.349
Pixel-GS [Zhang et al. 2024] 0228 0.193  0.234 0215 [0.334 0.286 0305 0.280
Analytic-Splatting [Liang et al. 2024] |0.231 0.176 0.217 0.205 |0.336 0.377 0.334 0.292
Analytic.+3D Filter [Liang et al. 2024]|0.218 0.176 0.211 0.205 |0.346 0.518 0.336 0.321
Ours 0.190 0.129 0.203 0.186 |0.808 0.881 0.776 0.794

2024] when the number of Gaussians is the same. When the number
of Gaussians increases, our splitting algorithm reduces needle-like
artifacts, producing renderings with more details. In contrast, al-
though other methods utilize a larger number of Gaussians, they
still lack shape awareness, resulting in needle-like artifacts.

0.3754

0.350 1

0.325 1

0.300 1

LPIPS|
L

0.2751

0.250 1 \

0.2251 3D-GS
—e—  Mip-Splatting
0.200  —®— Ours

> 2 —e

050 075 100 125 150 175 200 225 250
The number of Gaussians le6

Fig. 2. Relationship between the number of Gaussians and image quality
(LPIPS| [Zhang et al. 2018]) across different methods on BALL.

Robustness to needle-like stuff. As illustrated in Fig. 3, 3DGS [Kerbl
et al. 2023] does not directly use a single needle-like Gaussian to fit
such needle-like stuff, which may still produce artifacts in such cases.
And our method does not lead to undesirable consequences due to
the constraints on Gaussian spectral entropy, while still achieving
high-fidelity rendering without noticeable artifacts.
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Pin
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(a) Ground-truth

(b) Ours
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Fig. 3. Robustness of our method to needle-like stuff.
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Mip-Splatting Analytic. Analytic.+3D Filter
Fig. 4. Qualitative comparisons on the synthetic scene [Verbin et al. 2022] with modified textures. Differences in quality highlighted by insets.

Mip-Splatting Pixel-GS
1.0
0.5
. O‘O

BALL

Fig. 5. Qualitative comparisons on the Deep Blending Dataset [Hedman et al. 2018].
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Fig. 6. Qualitative comparisons on the real scenes captured by ourselves. Differences in quality highlighted by insets.
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Fig. 7. Qualitative comparisons on the Mip-NeRF 360 Dataset [Barron et al. 2022]. Differences in quality highlighted by insets.
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