
Spectral-GS: Taming 3D Gaussian Splatting with Spectral Entropy

The Supplemental Document

LETIAN HUANG, State Key Lab for Novel Software Technology, Nanjing University, China

JIE GUO
∗
, State Key Lab for Novel Software Technology, Nanjing University, China

JIALIN DAN, State Key Lab for Novel Software Technology, Nanjing University, China

RUOYU FU, State Key Lab for Novel Software Technology, Nanjing University, China

YUANQI LI, State Key Lab for Novel Software Technology, Nanjing University, China

YANWEN GUO, State Key Lab for Novel Software Technology, Nanjing University, China

ACM Reference Format:
Letian Huang, Jie Guo, Jialin Dan, Ruoyu Fu, Yuanqi Li, and Yanwen Guo.
2025. Spectral-GS: Taming 3D Gaussian Splatting with Spectral Entropy The
Supplemental Document.ACM Trans. Graph. 44, 6, Article 1 (December 2025),
7 pages. https://doi.org/10.1145/3757377.3763907

A Proofs in Spectral Analysis of Gaussians

A.1 Spectral Analysis of Matrices

Mathematically, the spectrum of a matrix refers to the set of its
eigenvalues [Eisenbud 2013; Golub and Van Loan 2013; Zill 2020].

Eigenvalue (Spectrum). A matrix A ∈ R𝑁×𝑁 can be eigendecom-
posed as follows:

A = Q𝚲Q−1 (1)
where 𝚲 = diag

(
𝜆1, 𝜆2, . . . , 𝜆𝑁

)
is the diagonal matrix whose di-

agonal elements are the corresponding eigenvalues, 𝚲𝑖𝑖 = 𝜆𝑖 . The
trace of A, denoted tr (A), is the sum of all eigenvalues, i.e., tr (A) =∑𝑁
𝑖=1 𝜆𝑖 . And the determinant of A, denoted det (A) or |A|, is the

product of all eigenvalues, i.e., det (A) = |A| = ∏𝑁
𝑖=1 𝜆𝑖 .

Spectral radius. In mathematics, the spectral radius 𝜌 (·) of a
square matrix A is the maximum of the absolute values of its eigen-
values:

𝜌 (A) = max ( |𝜆1 | , |𝜆2 | , . . . , |𝜆𝑁 |) . (2)
The eigenvector corresponding to the spectral radius of A is com-
monly referred to as the principal eigenvector.
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Condition number. The condition number 𝜅 (·) of a function quan-
tifies the sensitivity of the function’s output to small perturbations
in its input. When selecting the spectral radius as the matrix norm
(spectral norm), the condition number of a normal matrix A is:

𝜅 (A) =


A−1

 ∥A∥ = 𝜌 (A)

𝜌min (A)
(3)

where 𝜌min (A) = min ( |𝜆1 | , |𝜆2 | , . . . , |𝜆𝑁 |) is the minimum of the
absolute values of the eigenvalues.

Spectral entropy [Roy and Vetterli 2007; Shannon 1948; Von Neu-
mann 2018; Wei et al. 2024]. Let A be a positive semi-definite matrix
(∀ 0 ≤ 𝑖 ≤ 𝑁, 𝜆𝑖 ≥ 0) and the trace of A be positive (tr (A) > 0).
Then the matrix K = A

tr(A) satisfies tr (K) = 1. The spectral entropy
H (·) is:

H (A) = tr (−K lnK) = −
𝑁∑︁
𝑖=1

𝜆𝑖

tr (A) ln
𝜆𝑖

tr (A) . (4)

A.2 Maxima and Minima in Spectral Analysis

This section will provide a detailed proof that the condition number
is minimized and the spectral entropy is maximized when 𝑠1 = 𝑠2 =
𝑠3.

Condition number. It is evident that the spectrum of the Gaussian
satisfies the following inequality:

0 < min
(
𝑠21, 𝑠

2
2, 𝑠

2
3

)
≤ max

(
𝑠21, 𝑠

2
2, 𝑠

2
3

)
. (5)

Consequently, the condition number satisfies

𝜅 (𝚺) =
max

(
𝑠21, 𝑠

2
2, 𝑠

2
3

)
min

(
𝑠21, 𝑠

2
2, 𝑠

2
3

) ≥ 1, (6)

with equality iff max
(
𝑠21, 𝑠

2
2, 𝑠

2
3

)
= min

(
𝑠21, 𝑠

2
2, 𝑠

2
3

)
. Therefore, we

can conclude that the condition number of 𝚺 is minimized when
𝑠1 = 𝑠2 = 𝑠3.

Spectral entropy. Using the 3D Gaussian as an example, we aim
to find the maximum value of the spectral entropy in Eqn. (8) of
the paper. Let 𝑡𝑖 be

𝑠2𝑖∑3
𝑗=1 𝑠

2
𝑗

. It is evident that this is a constrained
optimization problem

arg max
𝑡1,𝑡2,𝑡3

H (𝚺) = −
3∑︁
𝑖=1

𝑡𝑖 ln 𝑡𝑖 , s.t.
3∑︁
𝑖=1

𝑡𝑖 = 1 (7)
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which can be solved using the method of Lagrange multipliers as
below:

arg max
𝑡1,𝑡2,𝑡3

F (𝑡1, 𝑡2, 𝑡3, 𝜆) = −
3∑︁
𝑖=1

𝑡𝑖 ln 𝑡𝑖 + 𝜆
( 3∑︁
𝑖=1

𝑡𝑖 − 1
)

(8)

where 𝜆 is the Lagrange multiplier. Now we can calculate the gradi-
ent:

∇𝑡1,𝑡2,𝑡3,𝜆F (𝑡1, 𝑡2, 𝑡3, 𝜆) =
(
𝜕F
𝑡1
,
𝜕F
𝑡2
,
𝜕F
𝑡3
,
𝜕F
𝜆

)
(9)

and therefore:

∇𝑡1,𝑡2,𝑡3,𝜆F (𝑡1, 𝑡2, 𝑡3, 𝜆) = 0 ⇐⇒


𝜆 = ln 𝑡1 + 1
𝜆 = ln 𝑡2 + 1
𝜆 = ln 𝑡3 + 1∑3
𝑖=1 𝑡𝑖 = 1

. (10)

In summary, we can conclude that the spectral entropy of 𝚺 is
maximized when 𝑡1 = 𝑡2 = 𝑡3 (𝑠1 = 𝑠2 = 𝑠3).

A.3 Relationship Between 𝜅 (·) and H (·)
We can express the spectral entropy H (𝚺) as a function of the
condition number 𝜅 (𝚺) for the 2D Gaussian:

H (𝚺) = −
𝑠21

𝑠21 + 𝑠
2
2
ln

𝑠21
𝑠21 + 𝑠

2
2
−

𝑠22
𝑠21 + 𝑠

2
2
ln

𝑠22
𝑠21 + 𝑠

2
2

= ln (𝜅 (𝚺) + 1) − 𝜅 (𝚺) ln𝜅 (𝚺)
𝜅 (𝚺) + 1 .

(11)

Then we calculate the derivative:
dH (𝚺)
d𝜅 (𝚺) = − ln𝜅 (𝚺)

(𝜅 (𝚺) + 1)2
≤ 0, where 𝜅 (𝚺) ≥ 1, (12)

which indicates that the spectral entropy of a 2D Gaussian decreases
as the condition number increases. We visualize this function in
Fig. 1a.
For the 3D Gaussian, assuming without loss of generality that

𝑠1 ≤ 𝑠2 ≤ 𝑠3, we have 𝜅 (𝚺) =
𝑠23
𝑠21

and let 𝜂 =
𝑠22
𝑠21
. We can similarly

derive the function for the 3D Gaussian:

H (𝚺) = ln (𝜅 (𝚺) + 𝜂 + 1) − 𝜅 (𝚺) ln𝜅 (𝚺) + 𝜂 ln𝜂
𝜅 (𝚺) + 𝜂 + 1 (13)

and visualize the function in Fig. 1b.

A.4 View-Inconsistency in Filtering

The Jacobian matrix of the local affine approximation is as follows:

J =

𝑓𝑥
𝜇𝑧

0 − 𝑓𝑥 𝜇𝑥
𝜇2𝑧

0 𝑓𝑦
𝜇𝑧

− 𝑓𝑦𝜇𝑦
𝜇2𝑧

 =


𝑓𝑥
𝜇𝑧

0 0
0 𝑓𝑦

𝜇𝑧
0



1 0 − 𝜇𝑥𝜇𝑧
0 1 − 𝜇𝑦𝜇𝑧
0 0 1

 (14)

where 𝑓𝑥 , 𝑓𝑦 denote the intrinsic parameters of the camera model
and 𝝁

′
=

[
𝜇𝑥 𝜇𝑦 𝜇𝑧

]⊤ is the position of the 3D Gaussian in the
camera space. We assume that the position of the Gaussian projected
onto the 𝑧 = 1 plane, i.e.,

[
𝜇𝑥
𝜇𝑧
,
𝜇𝑦
𝜇𝑧

]⊤
, remains unchanged during the

camera zoom-in. Since the covariance matrix in the camera space

(a) H (𝚺) = 𝑓 (𝜅 (𝚺) ) for the 2D Gaussian

(b) H (𝚺) = 𝑓 (𝜅 (𝚺, 𝜂 ) ) for the 3D Gaussian

Fig. 1. Visualization of the function H (𝚺) = 𝑓 (𝜅 (𝚺) ) for the 2D Gaussian

and H (𝚺) = 𝑓 (𝜅 (𝚺, 𝜂 ) ) for the 3D Gaussian.

𝚺

′ also remains unchanged when zooming in, the following matrix
is a constant matrix

𝚺

′′
=


1 0 − 𝜇𝑥𝜇𝑧
0 1 − 𝜇𝑦𝜇𝑧
0 0 1

 𝚺
′

1 0 − 𝜇𝑥𝜇𝑧
0 1 − 𝜇𝑦𝜇𝑧
0 0 1


⊤

=


𝑎 𝑏 𝑐

𝑏 𝑑 𝑒

𝑐 𝑒 𝑓

 (15)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ [0, +∞). Then we obtain:

𝚺filter = J𝚺
′
J⊤ + 𝜎I ≈


𝜎 + 𝑎𝑓

2
𝑥

𝜇2𝑧

𝑏𝑓𝑥 𝑓𝑦

𝜇2𝑧
𝑏𝑓𝑥 𝑓𝑦

𝜇2𝑧
𝜎 + 𝑑𝑓

2
𝑦

𝜇2𝑧

 . (16)

Then we can compute the condition number of the matrix:

𝜅 (𝚺filter) =
1
2 tr (𝚺filter) +

√︃
1
4 tr2 (𝚺filter) − |𝚺filter |

1
2 tr (𝚺filter) −

√︃
1
4 tr2 (𝚺filter) − |𝚺filter |

=

2𝜎 + ©­«𝑎 + 𝑑 𝑓
2
𝑦

𝑓 2𝑥
+

√︄(
𝑎 − 𝑑 𝑓

2
𝑦

𝑓 2𝑥

)2
+ 4𝑏2 𝑓

2
𝑦

𝑓 2𝑥

ª®¬ 𝑓 2𝑥
𝜇2𝑧

2𝜎 + ©­«𝑎 + 𝑑 𝑓
2
𝑦

𝑓 2𝑥
−

√︄(
𝑎 − 𝑑 𝑓

2
𝑦

𝑓 2𝑥

)2
+ 4𝑏2 𝑓

2
𝑦

𝑓 2𝑥

ª®¬ 𝑓 2𝑥
𝜇2𝑧

(17)
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which is a function of 𝑓
2
𝑥

𝜇2𝑧
due to the other values remaining constant

during the camera zoom-in. And the derivative of the function is:

d𝜅 (𝚺filter)

d 𝑓
2
𝑥

𝜇2𝑧

=
4𝑝𝜎(

2𝜎 +
(
𝑎 + 𝑑 𝑓

2
𝑦

𝑓 2𝑥
− 𝑝

)
𝑓 2𝑥
𝜇2𝑧

)2 > 0 (18)

where 𝑝 =

√︄(
𝑎 − 𝑑 𝑓

2
𝑦

𝑓 2𝑥

)2
+ 4𝑏2 𝑓

2
𝑦

𝑓 2𝑥
. This indicates that the condition

number of a 2D Gaussian increases when zooming in the camera
(increasing the 𝑓𝑥

𝜇𝑧
). And according to the relationship between

spectral entropy and the condition number derived in Sec. A.3, the
spectral entropy H (𝚺filter) also decreases when zooming in the
camera. The curve of 𝜅 (𝚺filter) as a function of 𝑓

2
𝑥

𝜇2𝑧
is visualized in

Fig. 4 of the paper.

A.5 𝑘 in 3D Shape-Aware Splitting

For the 3D Gaussian, assuming without loss of generality that 𝑠1 ≤
𝑠2 ≤ 𝑠3, we can derive the following:

𝜅

(
𝚺split

)
=

max
(

𝑠23
(𝑘+𝑘0 )2

,
𝑠22
𝑘20

)
min

(
𝑠23

(𝑘+𝑘0 )2
,
𝑠21
𝑘20

)

=


𝑘20𝑠

2
3

(𝑘+𝑘0 )2𝑠21
, if 𝑘+𝑘0

𝑘0
≤ 𝑠3
𝑠2

𝑠22
𝑠21
, if 𝑠3𝑠2 <

𝑘+𝑘0
𝑘0
≤ 𝑠3
𝑠1

(𝑘+𝑘0 )2𝑠22
𝑘20𝑠

2
3

, if 𝑘+𝑘0
𝑘0

>
𝑠3
𝑠1

, (19)

𝜅 (𝚺) =
𝑠23
𝑠21
. (20)

Clearly, we have:

𝑘20𝑠
2
3

(𝑘 + 𝑘0)2 𝑠21
<
𝑠23
𝑠21

= 𝜅 (𝚺) ,
𝑠22
𝑠21
≤
𝑠23
𝑠21

= 𝜅 (𝚺) . (21)

And when Eqn. (12) in the paper is satisfied, we can derive the
following:

𝑘 + 𝑘0
𝑘0

<
𝜌

3
2 (𝚺)√︁
|𝚺|

=
𝑠23
𝑠2𝑠1

, (22)

(𝑘 + 𝑘0)2 𝑠22
𝑘20𝑠

2
3

<

(
𝑠23
𝑠2𝑠1

)2
𝑠22

𝑠23
=
𝑠23
𝑠21

= 𝜅 (𝚺) . (23)

In summary, we can conclude that the condition number after split-
ting does not exceed that before splitting, i.e., 𝜅

(
𝚺split

)
≤ 𝜅 (𝚺),

when Eqn. (12) in the paper is satisfied.

A.6 2D View-Consistent Filtering Kernel

We prove the view-consistency of our filter:

𝜅 (𝚺train) =
𝜌

(
Jtrain𝚺

′
J⊤train

)
+ 𝜌 (𝜎I)

𝜌min
(
Jtrain𝚺

′
J⊤train

)
+ 𝜌min (𝜎I)

=

𝜌

(
Jtest𝚺

′
J⊤test

)
+ 𝜌

((
JtestJ−1train

)
𝜎I

(
JtestJ−1train

)⊤)
𝜌min

(
Jtest𝚺

′
J⊤test

)
+ 𝜌min

((
JtestJ−1train

)
𝜎I

(
JtestJ−1train

)⊤)

=

𝜌 (𝚺test) + 𝜌
((
JtestJ−1train

)
𝜎I

(
JtestJ−1train

)⊤)
𝜌min (𝚺test) + 𝜌min

((
JtestJ−1train

)
𝜎I

(
JtestJ−1train

)⊤)
= 𝜅 (𝚺test) .

(24)

In Sec. A.4, when 𝜎 ∝ 𝑓 2𝑥
𝜇2𝑧
, the function 𝜅 (𝚺filter) and H (𝚺filter) are

constant. Therefore, we can approximate this operation using the
filter kernel function 𝜎 (𝑓𝑥 , 𝜇𝑧) = 𝜎0 𝑓

2
𝑥

𝜇2𝑧
, where 𝜎0 is a constant.

B Spectral-GS Algorithm

Our method is summarized in Algorithm 1 and Algorithm 2. We
mark the enhancements in related methods [Bulò et al. 2024; Huang
et al. 2024b; Hyung et al. 2024; Kheradmand et al. 2024; Radl et al.
2024; Tu et al. 2025] to show their orthogonality to our approach.

C Details of Experiments

C.1 Additional Comparisons

Figures 4-7 illustrate additional qualitative comparisons over the
Blender Dataset [Mildenhall et al. 2020], Deep Blending [Hedman
et al. 2018], scenes captured by ourselves and the Mip-NeRF 360
Dataset [Barron et al. 2022]. Differences in quality are highlighted
by insets. For better comparison, the metrics are annotated below
some images. Tables 1-2 list LPIPS and spectral entropy for our
evaluation over all considered approaches and scenes [Hedman et al.
2018; Knapitsch et al. 2017; Mildenhall et al. 2020].

Table 1. The LPIPS↓ and spectral entropy↑ scores for each scene of the

Blender Dataset [Mildenhall et al. 2020].

LPIPS↓ Hotdog Chair Ship Lego Materials Drums Ficus Mic Avg.
3DGS [Kerbl et al. 2023] 0.204 0.213 0.310 0.189 0.141 0.190 0.111 0.063 0.178
Mip-Splatting [Yu et al. 2024] 0.126 0.114 0.216 0.111 0.113 0.139 0.065 0.031 0.114
Pixel-GS [Zhang et al. 2024] 0.210 0.215 0.312 0.192 0.146 0.196 0.100 0.063 0.179
Analytic-Splatting [Liang et al. 2024] 0.165 0.174 0.282 0.150 0.141 0.177 0.120 0.053 0.158
Analytic.+3D Filter [Liang et al. 2024] 0.133 0.112 0.219 0.119 0.115 0.139 0.071 0.031 0.117
Ours 0.099 0.098 0.196 0.098 0.100 0.134 0.063 0.028 0.102

Spectral Entropy↑ Hotdog Chair Ship Lego Materials Drums Ficus Mic Avg.
3DGS [Kerbl et al. 2023] 0.152 0.083 0.141 0.189 0.242 0.138 0.281 0.088 0.164
Mip-Splatting [Yu et al. 2024] 0.339 0.397 0.338 0.361 0.397 0.378 0.459 0.238 0.363
Pixel-GS [Zhang et al. 2024] 0.141 0.086 0.131 0.170 0.193 0.141 0.271 0.078 0.151
Analytic-Splatting [Liang et al. 2024] 0.234 0.222 0.210 0.241 0.285 0.212 0.260 0.170 0.227
Analytic.+3D Filter [Liang et al. 2024] 0.332 0.390 0.334 0.354 0.397 0.252 0.332 0.170 0.320
Ours 0.697 0.992 0.996 0.970 0.967 0.969 0.986 0.991 0.946

ACM Trans. Graph., Vol. 44, No. 6, Article 1. Publication date: December 2025.
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Algorithm 1 Spectral-GS Algorithm
𝑊 , 𝐻 : width and height of the training or testing images
𝑀, 𝑆,𝐶,𝑂 ← Gaussians() ⊲ Pos, Covs, Colors, Opacs
if is testing then

𝑉 ← TestingView()
𝑀𝑝 , 𝑆𝑝 ← SplatGaussian(𝑊 , 𝐻 ,𝑀 , 𝑆 , 𝑉 ) ⊲ Can be combined

with other methods [Huang et al. 2024a; Tu et al. 2025]
𝑆𝑓 , 𝑂 𝑓 ← SpectralBasedFilter(𝑆𝑝 , 𝑂 , 𝑉 ) ⊲ Filter, Ours
DepthBasedRadixSort(𝑀𝑝 , 𝑆𝑓 , 𝑂 𝑓 , 𝐶 ,𝑀) ⊲ Can be combined

with Radl et al. [2024]
𝐼 ← Rasterize(𝑊 , 𝐻 ,𝑀𝑝 , 𝑆𝑓 , 𝐶 , 𝑂 𝑓 , 𝑉 )

else
𝑖 ← 0 ⊲ Iteration Count
while not converged do

𝑉 , 𝐼 ← TrainingView() ⊲ Camera and Image
𝑀𝑝 , 𝑆𝑝 ← SplatGaussian(𝑊 , 𝐻 ,𝑀 , 𝑆 , 𝑉 ) ⊲ Can be

combined with other methods [Huang et al. 2024a; Tu et al. 2025]
𝑆𝑓 , 𝑂 𝑓 ← SpectralBasedFilter(𝑆𝑝 , 𝑂 , 𝑉 ) ⊲ Filter, Ours
DepthBasedRadixSort(𝑀𝑝 , 𝑆𝑓 , 𝑂 𝑓 , 𝐶 ,𝑀) ⊲ Can be

combined with Radl et al. [2024]
𝐼 ← Rasterize(𝑊 , 𝐻 ,𝑀𝑝 , 𝑆𝑓 , 𝐶 , 𝑂 𝑓 , 𝑉 )
L ← Loss(𝐼 , 𝐼 ) ⊲ Compute Loss, can be combined

with Hyung et al. [2024]; Xie et al. [2024]
𝑀 , 𝑆 , 𝐶 , 𝑂 ← Adam(∇L) ⊲ Backprop & Step, can be

combined with Kheradmand et al. [2024]
if IsRefinementIteration(𝑖) then

for all G3𝐷 (𝝁, 𝚺, 𝑐, 𝑜) in (𝑀, 𝑆,𝐶,𝑂) do
if 𝑜 < 𝜖o or IsInvalidSpectrum(𝑜 , 𝚺) then

SpectralBasedPruneGaussian() ⊲ Ours
end if
if ∥∇𝝁projL∥𝐹 > 𝜏loss then ⊲ Densify, can be

combined with Zhang et al. [2024]
if 𝜌 (𝚺) > 𝜏radius then ⊲ Split

LossBasedSplitGaussian(𝝁, 𝚺, 𝑐, 𝑜)
else ⊲ Clone

LossBasedCloneGaussian(𝝁, 𝚺, 𝑐, 𝑜)
end if

end if
if H (𝚺) < 𝜏spectral then ⊲ Densify, Ours

SpectralBasedSplitGaussian(𝝁, 𝚺, 𝑐, 𝑜) ⊲ Ours
end if

end for
end if
𝑖 ← 𝑖 + 1

end while
end if

C.2 Additional Discussions

Number of Gaussians. Since our 3D shape-aware splitting in-
creases the number of Gaussians to capture high-frequency details
and prunes degenerated Gaussians with excessively low spectral
entropy directly, we conduct additional quantitative experiments
regarding the number of Gaussians and image quality. As shown
in Fig. 2, our method outperforms others [Kerbl et al. 2023; Yu et al.

Algorithm 2 SpectralBasedSplitGaussian
𝝁, 𝚺, 𝑐, 𝑜 : position, covariance, color and opacity
𝑘, 𝑘0, 𝐾 : splitting hyperparameters

𝝁1, 𝝁2, . . . , 𝝁𝐾 ∼ N (𝝁, 𝚺) ⊲ Sampling based on the PDF
for 𝑖 ∈ [1, 3] do

𝑘𝑖 ← 𝑘 · 𝟙
{
𝑠2
𝑖
= 𝜌 (𝚺)

}
+ 𝑘0 ⊲ Anisotropic coefficient

end for
𝑜1, 𝑜2, · · · , 𝑜𝐾 ← 𝑜 ⊲ Can be combined with other methods [Bulò
et al. 2024; Kheradmand et al. 2024]
𝑐1, 𝑐2, · · · , 𝑐𝐾 ← 𝑐

R, 𝑠1, 𝑠2, 𝑠3 ← 𝚺 ⊲ Eigendecompose

𝚺1, 𝚺2, . . . , 𝚺𝐾 ← Rdiag
(
1
𝑘21
𝑠21,

1
𝑘22
𝑠22,

1
𝑘23
𝑠23

)
R⊤

Table 2. The LPIPS↓ and spectral entropy↑ for each scene of Tanks & Tem-

plates [Knapitsch et al. 2017] and Deep Blending [Hedman et al. 2018].

LPIPS↓ Spectral Entropy↑
Train Truck Drjohnson Playroom Train Truck Drjohnson Playroom

3DGS [Kerbl et al. 2023] 0.232 0.221 0.215 0.215 0.316 0.254 0.311 0.276
Mip-Splatting [Yu et al. 2024] 0.212 0.166 0.213 0.201 0.416 0.544 0.377 0.349
Pixel-GS [Zhang et al. 2024] 0.228 0.193 0.234 0.215 0.334 0.286 0.305 0.280
Analytic-Splatting [Liang et al. 2024] 0.231 0.176 0.217 0.205 0.336 0.377 0.334 0.292
Analytic.+3D Filter [Liang et al. 2024] 0.218 0.176 0.211 0.205 0.346 0.518 0.336 0.321
Ours 0.190 0.129 0.203 0.186 0.808 0.881 0.776 0.794

2024] when the number of Gaussians is the same. When the number
of Gaussians increases, our splitting algorithm reduces needle-like
artifacts, producing renderings with more details. In contrast, al-
though other methods utilize a larger number of Gaussians, they
still lack shape awareness, resulting in needle-like artifacts.

Fig. 2. Relationship between the number of Gaussians and image quality

(LPIPS↓ [Zhang et al. 2018]) across different methods on Ball.

Robustness to needle-like stuff. As illustrated in Fig. 3, 3DGS [Kerbl
et al. 2023] does not directly use a single needle-like Gaussian to fit
such needle-like stuff, whichmay still produce artifacts in such cases.
And our method does not lead to undesirable consequences due to
the constraints on Gaussian spectral entropy, while still achieving
high-fidelity rendering without noticeable artifacts.
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(a) Ground-truth

Needle-like stuff

(b) Ours (c) 3DGS

Fig. 3. Robustness of our method to needle-like stuff.
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Ground-truth 3DGS Mip-SplattingOurs Analytic.+3D FilterAnalytic.

Ball

Fig. 4. Qualitative comparisons on the synthetic scene [Verbin et al. 2022] with modified textures. Differences in quality highlighted by insets.

Ours 3DGS Mip-Splatting

Playroom

Ground-truth Pixel-GS

1.0

0.5

0.0

Fig. 5. Qualitative comparisons on the Deep Blending Dataset [Hedman et al. 2018].
Ground-truth 3DGS Mip-SplattingOurs Analytic.+3D FilterAnalytic.

Toy

PSNR: 26.01
SSIM: 0.663
LPIPS:0.315

PSNR: 22.07
SSIM: 0.545
LPIPS:0.392

PSNR: 16.83
SSIM: 0.500
LPIPS:0.371

PSNR: 25.15
SSIM: 0.609
LPIPS:0.385

PSNR: 25.42
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Tripod

training 
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training 
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Fig. 6. Qualitative comparisons on the real scenes captured by ourselves. Differences in quality highlighted by insets.
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Ours
LPIPS: 0.212

3DGS
LPIPS: 0.357

Mip-Splatting
LPIPS: 0.270

Ground-truth Ours
PSNR: 31.92dB

3DGS
PSNR: 25.87dB

Mip-Splatting
PSNR: 29.63dB

Ground-truth

Treehill

Pixel-GS
LPIPS: 0.386

Analytic-Splatting
LPIPS: 0.298

Pixel-GS
PSNR: 24.58dB

Analytic-Splatting
PSNR: 26.31dB

Fig. 7. Qualitative comparisons on the Mip-NeRF 360 Dataset [Barron et al. 2022]. Differences in quality highlighted by insets.
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